Abstract
Cadmium (Cd) contamination in cropland poses a significant threat to the quality of agricultural products, but even though in-situ remediation has been extensively applied, non-selective immobilization remains an issue. In order to develop a material that specifically immobilizes Cd in soil, a layered double hydroxide, intercalated with mercaptosuccinic acid (MSA-CFA), was synthesized through co-precipitation. In this case, the MSA-CFA's maximum adsorption capacity was increased from the 513.8 mg·g−1 for unintercalated hydrotalcite CFA to 692.6 mg·g−1. Besides, MSA-CFA efficiently removed 99.25 % of Cd from soil water-extract solution and immobilized up to 70.03 % of bio-available Cd. However, interestingly, its immobilization effects on beneficial metal elements Fe, Mn and Zn were milder, being equivalent to 2/7, 5/7 and 1/2 that of lime, respectively. Moreover, XRD and XPS techniques revealed isomorphous substitution with calcium and sulfhydryl complexation during the Cd adsorption by MSA-CFA. Compared with CFA, the increased adsorption capacity of MSA-CFA for Cd was due to intercalated MSA acting as a new adsorption site, while the enhanced selectivity was contributed by sulfhydryl's affinity for Cd. Altogether, MSA-CFA showed great promise as a competitive and highly efficient candidate amendment in Cd-contaminated soil remediation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.