Abstract

The widespread demand for clean energy stimulates great interest to hydrogen energy with high energy density and conversion efficiency. Separation technologies by membranes are increasingly applied for hydrogen separation because of its excellent performance and low consumption. In this work, density functional theory simulations is used to study hydrogen separation of Pd–Au–Ag membrane, and the performance of Pd–Au alloy is also compared and discussed. The results indicate that Pd–Au alloy shows superior selectivity to H2 gas over CO, N2, CH4, CO2 and H2S gases, which is in line with experimental results. In particular, the separation selectivity of Pd–Au–Ag to H2 is significantly greater than those for Pd–Au alloy and several currently reported materials. Moreover, the permeability of H2 in Pd–Au–Ag exceeds the limits for industrial production at deferent temperatures. Our calculations demonstrate that Pd–Au–Ag alloy present excellent performance as a promising membrane for hydrogen separation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.