Abstract

Cannabinoid (CB) receptors are widespread in the nervous system and influence a variety of behaviors. Weakly electric fish have been a useful model system in the study of the neural basis of behavior, but we know nothing of the role played by the CB system. Here, we determine the overall behavioral effect of a nonselective CB receptor agonist, namely Δ<sup>9</sup>-tetrahydrocannabinol (THC), in the weakly electric fish Apte­ronotus leptorhynchus. Using various behavioral paradigms involving social stimuli, we show that THC decreases locomotor behavior, as in many species, and influences communication and social behavior. Across the different experiments, we found that the propensity to emit communication signals (chirps) and seek social interactions was affected in a context-dependent manner. We explicitly tested this hypothesis by comparing the behavioral effects of THC injection in fish placed in a novel versus a familiar social and physical environment. THC-injected fish were less likely to chirp than control fish in familiar situations but not in novel ones. The tendency to be in close proximity to other fish was affected only in novel environments, with control fish clustering more than THC-injected ones. By identifying behaviors affected by CB agonists, our study can guide further comparative and neurophysiological studies of the role of the CB system using a weakly electric fish as a model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.