Abstract
Damage to myelin sheath or oligodendrocytes may precede or even provoke inflammation of the central nervous system (CNS), but the extent to which these degenerative changes affect inflammation remains largely undefined. To study these processes in more detail, we used CNS antigen-specific T cells in the presence or absence of anti-myelin antibodies to induce experimental autoimmune encephalomyelitis (EAE) in transgenic Lewis rats with low-grade subclinical myelin degeneration and associated microglia cell activation, and in wild-type Lewis rats with an intact CNS. We found that myelin degeneration affects the localization of inflammatory lesions, the numbers of T cells recruited to these lesions, and the severity of the resulting clinical disease. In addition, myelin degeneration and associated microglia cell activation jointly enhance the susceptibility of the CNS to the action of anti-myelin antibodies. Our data show that even subtle alterations of myelin and oligodendrocytes may massively amplify the extent of demyelination and tissue damage, involving different immune effector mechanisms. A similar causal relationship might also operate in human patients with multiple sclerosis, where T cell-mediated inflammation and antibody-mediated demyelination have been documented, and where genetic factors might determine the susceptibility of the target tissue for immune-mediated injury.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Neuropathology & Experimental Neurology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.