Abstract

Markers of GABA neurotransmission between chandelier neurons and their synaptic targets, the axon initial segment (AIS) of pyramidal neurons, are altered in the dorsolateral prefrontal cortex (dlPFC) of subjects with schizophrenia. For example, immunoreactivity for the GABA membrane transporter (GAT1) is decreased in presynaptic chandelier neuron axon terminals, whereas immunoreactivity for the GABAA receptor α2 subunit is increased in postsynaptic AIS. To understand the nature and functional significance of these alterations, we determined the density, laminar distribution and length of AIS immunoreactive for ankryin-G and βIV spectrin, two proteins involved in the regulation of synapse structure and ion channel clustering at AIS, in dlPFC area 46 from 14 matched triads of subjects with schizophrenia or major depressive disorder (MDD) and normal comparison subjects. The density of ankyrin-G-immunoreactive (IR) AIS in the superficial, but not in the deep, cortical layers was significantly decreased by 15-19% in the subjects with schizophrenia relative to the other subject groups. In contrast, no group differences were present in the density of βIV spectrin-IR AIS. The length of labeled AIS did not differ across subject groups for either ankyrin-G or βIV spectrin. The density of ankyrin-G-IR AIS was not altered in the dlPFC of macaque monkeys chronically exposed to antipsychotic medications. Given the important role of ankyrin-G in the recruitment and stabilization of sodium channels and other integral membrane proteins to AIS, our findings suggest that these processes are selectively altered in superficial layer pyramidal neurons in subjects with schizophrenia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call