Abstract

The clinical efficacy of the ALK inhibitor crizotinib has been demonstrated in ALK fusion-positive NSCLC; however, resistance to crizotinib certainly occurs through ALK secondary mutations in clinical use. Here we examined the efficacy of a selective ALK inhibitor alectinib/CH5424802 in models of crizotinib resistance. Alectinib led to tumor size reduction in EML4-ALK-positive xenograft tumors that failed to regress fully during the treatment with crizotinib. In addition, alectinib inhibited the growth of some EML4-ALK mutant-driven tumors, including the G1269A model. These results demonstrated that alectinib might provide therapeutic opportunities for crizotinib-treated patients with ALK secondary mutations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call