Abstract
AbstractMolecularly imprinting (MI) hydrogels for selective adsorption of trypsin are reported. The trypsin imprinted hydrogels were prepared using a polyethylene glycol (PEG)-based dimethacrylate as a crosslinker and anionic functional monomers. The hydrogel prepared without any functional monomers showed significantly low ability to adsorb a variety of proteins. We optimized the concentration and the length of PEG units of the crosslinkers to achieve the complete removal of the template molecule and suitable selective adsorption. Additionally, the functional monomers chosen were anionic since the template, trypsin, is a basic protein. The adsorption tests for proteins, done on the prepared MI gels, indicated that the MI gel prepared with sodium allyl sulfonate (AS) as a functional monomer showed much higher selective adsorption for trypsin, even though a mixture of trypsin and cytochrome c was used as the protein solution. The selective adsorption was more effective in a NaCl solution in which the non-specific adsorption by a sulfonate is suppressed, similarly to our findings in a previous study. The MI gel prepared with acrylic acid also showed the selectivity, although the adsorption strength was lower than that of the MI gel containing AS. We believe that the present study constitutes the first approach for the selective adsorption of trypsin using PEG-based hydrogels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.