Abstract
Hydrophilic silica aerogel (HSA) was obtained by sol-gel method and dried at ambient conditions and further studied for the removal of organic dyes in water. Silica aerogel was characterized by its morphology, porous structure, specific surface area and particle size distribution by scanning electron microscopy, Brunauer-Emmett-Teller and pore size distribution. The HSA after calcination had a specific surface area of 888.73 m2/g and an average particle size of 2.6341 nm. Moreover, adsorption properties of the HSA toward organic dyes - adsorption conditions, kinetics data, and equilibrium model - were investigated. The removal rate of cationic dyes (rhodamine B (RhB), methylene blue (MB) and crystal violet (CV)) by HSA was up to 90%, while the removal rate of anionic dye (acid orange 7) was not more than 30%. The maximum adsorptions were: RhB 191.217 mg/g, MB 51.1601 mg/g and CV 24.85915 mg/g, respectively. Based on the adsorption mechanism of HSA for cationic/anionic dyes, the conclusion confirmed the prospect of HSA as effective adsorbent to treat cationic dyes wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.