Abstract

Selective adsorption of alkylphenol polyethoxylates (APnEOs) from synthetic textile wastewater was investigated using hexagonal mesoporous silicates (HMSs). HMSs are synthetic silicate that have uniform mesopores, large surface areas and uniform surface functional groups. Five different types of HMSs were synthesized by surfactant-templating methods, and three of them were grafted with organic surface functional groups, i.e., n-octyldimethyl-, 3-aminopropyltriethoxy-, and 3-mercaptopropyl-groups. Titanium-substituted HMS was also made in the same way as HMS. Adsorption capacities and selectivities of these HMSs for APnEOs were investigated in batch adsorption experiments either in single-solute APnEO solutions or in mixed solutions with ionic dyes. Triton X-100 ® was used as a model APnEO and either Basic Yellow 1 or Acid Blue 45 was used as cationic or anionic dyes, respectively. All the HMSs except 3-aminopropyltriethoxy-grafted HMS had higher adsorption capacities of Triton X-100 ® than powdered activated carbon. HMS and Ti-HMS had the highest BET surface areas and mesopore volumes measured by the nitrogen adsorption method, and thereby the highest adsorption capacities for Triton X-100 ®. Surface charge was the most important attractive force between HMSs and dyes. FT-IR spectra proved that hydrophilic HMSs adsorbed both Basic Yellow 1 and Acid Blue 45 by hydrogen bonding. Acid–base titration experiments revealed that all the HMSs except 3-aminopropyltriethoxy-grafted HMS were negatively charged at neutral pH, whereas PAC and 3-aminopropyltriethoxy-grafted HMS were positively charged. Due to negative surface charge, the anionic dye (Acid Blue 45) was not adsorbed on the four HMSs, which proves high selectivities of these HMSs for Triton X-100 ® over Acid Blue 45. On the contrary, a small amount of cationic dye (Basic Yellow 1) was adsorbed on all HMSs, but 3-aminopropyltriethoxy-grafted HMS showed the lowest adsorption capacity for Basic Yellow 1 due to positive surface charge. Unlike other silicate adsorbents, no surface solubilization was observed for all HMSs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.