Abstract

The development of adsorbents to remove heavy metal ions from water with recyclable, high adsorption capacity, strong selectivity, safe, and economic performances has always been the focus and challenge of current research. A hyper-branched magnetic composite material (Fe3O4@SiO2–S4) was fabricated by a method combining “grafting,“, “branching,” and “modification,“, and the structure was characterized by FTIR, XRD, SEM, TEM, SAED, VSM, TGA, and BET. In addition, the adsorption performance and mechanism for heavy metal ions in water were studied. The as-prepared composite material had excellent selective absorbability for Hg2+, Cd2+, and Ag+ in the presence of Fe3+, Fe2+, Cu2+, Mn2+, CO2+, Zn2+, and Ni2+, and when pH = 6, T = 30 °C, t = 4 h, it reached a saturated adsorption capacity of 2.42, 2.18, and 1.94 mmol/g to Hg2+, Cd2+, and Ag+, respectively. The adsorption isotherm was consistent with the Langmuir isotherm adsorption model, and the Dubinin Redushcke (D-R) model identified that the adsorption was chemical adsorption in nature. The adsorption kinetic followed the pseudo-second-order model and Boyd film diffusion models. The adsorption capacity of as-prepared material remained about 83% after five elutions. The adsorption mechanism and selective adsorption were revealed by FTIR, EDS, XPS, and DFT calculation. N atoms and O atoms of the active functional groups complexed with metal ions to form stable 2 heptachate chelates and 1 tridentate chelate to achieve the effect of adsorption; furthermore, the adsorption was mainly governed by N atoms of Schiff base groups. This work not only explored an innovative method for the construction of adsorbing materials but also provided a promising adsorbent to selectively remove heavy metal ions in water with potential application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call