Abstract

A novel magnetic imprinting nanotechnology for selective capture of Gd(3+) from a mixed solution of rare earth ions was developed by simply adding Gd(3+)-imprinted chitosan/carbon nanotube nanocomposite (IIP-CS/CNT) and silica-coated magnetite nanoparticle (SiO2@Fe3O4). The IIP-CS/CNT was prepared for the first time via a facile "surface deposition-crosslinking" method, exhibiting a well-defined coating structure. Interestingly, the neighboring IIP-CS/CNT monomers were held together as bundles, like a network, containing abundant interstitial spaces. When IIP-CS/CNT and SiO2@Fe3O4 were dispersed in a mixed solution of rare earth ions, the magnetic SiO2@Fe3O4 submicrospheres would be trapped in or adhere to the IIP-CS/CNT network, leading to the magnetization of IIP-CS/CNT; meanwhile, Gd(3+) ions could be selectively captured by the magnetized IIP-CS/CNT. Saturation adsorption capacity for Gd(3+) was up to 88 mg g(-1) at 303.15 K, which is significantly higher than the Gd(3+) adsorption capacities for the reported rare earth ion-imprinted adsorbents over recent years. The selectivity coefficients relative to La(3+) and Ce(3+) were 3.50 and 2.23, respectively, which are very similar to those found for other reported CS-based imprinted materials. Moreover, the imprinted adsorbents could be easily and rapidly retrieved by an external magnetic field without the need of additional centrifugation or filtration, greatly facilitating the separation process. Test of reusability demonstrated that the magnetized IIP-CS/CNT could be repeatedly used without any significant loss in binding capacity. Overall, this work not only provides new insights into the fabrication of magnetic imprinted CS-based composite, but also highlights its application for selective adsorption toward rare earth ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.