Abstract

The nanostructure of active layers consisting of donor and acceptor molecules is responsible for the separation and transfer processes of charge carriers, which may result in different photoelectric conversion efficiencies of organic photovoltaic cells (OPVCs). Therefore, intensive study on the relationships among nanostructures, intermolecular interactions, and molecular chemical skeletons is necessary for preparing controlled nanostructures of active layers by designing photovoltaic molecules. In this research, the self-assembled nanopatterns of three (DPP-ZnP-E)2-based molecules on highly oriented pyrolytic graphite surface were probed by scanning tunneling microscopy and analyzed by density functional theory calculations. The results indicated that different bridges, diethynylene, diethynylene-dithienyl, and diethynylene-phenylene, in (DPP-ZnP-E)2-based molecules not only made a difference to intermolecular interactions and cooperated with molecule-substrate interactions, consequently affecting the packed nanopattern, but also influenced the adsorption of fullerene acceptors in the nanopatterns of (DPP-ZnP-E)2-based molecules. C60 molecules were found to be selectively adsorbed atop the dithienyl groups of (DPP-ZnP-E)2-2T donor molecules probably by S···π interactions compared with (DPP-ZnP-E)2 or (DPP-ZnP-E)2-Ph molecules. This study on the assembled nanopatterns of the three (DPP-ZnP-E)2-based molecules would be conductive to (DPP-ZnP-E)2-based optoelectronic materials design in OPVCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call