Abstract

Configurational-bias Monte Carlo simulations in the Gibbs ensemble (CBMC-GE) are used to investigate the adsorption of both linear and branched alkanes (ethane, propane, n-butane, and 2-methylpropane) from dilute solutions in liquid methane onto a carbon slit pore at T=160K and at either the saturation pressure or pext=100atm. Thermodynamic properties (adsorption isotherms, selectivities, and Henry's law constants) and structural properties (density and orientational distributions) are presented. Both the Henry's law constants and the separation factors depend exponentially on the number of carbon atoms for the linear alkanes, whereas chain branching and higher pressure lead to a reduction of these properties. The solute density profiles show oscillatory behavior along the surface normal, and peaks in the number density are correlated with a preference for parallel orientations. The CBMC-GE approach allows for the efficient calculation of these selective adsorption phenomena, and data for multiple solutes (in the dilute regime) can be extracted from a single simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.