Abstract

Development of highly functional cesium selective adsorbents for the decontamination of high-activity-level water (HALW) from the Fukushima NPP-1 accident is very urgent. In order to selectively adsorb the radioactive cesium, three kinds of novel porous silica gels loaded with insoluble ferrocyanides (SLFC) were prepared using a successive impregnation/precipitation method. Based on the results of previous research, the SLFC composites have relatively large uptake ratio above 95%, distribution coefficients (K d) above 103 cm3/g, and excellent adsorption kinetics even in seawater. The solidification results also indicate that zeolites have an excellent Cs immobilization characteristic, gas-trapping and self-sintering abilities, and low leachability. We chose three kinds of SLFC composites to achieve the optimization of solidification by mixing with nine kinds of additives at high temperatures (up to 1200 °C). The Cs contents in the three composites were estimated to be below 30% of the initial contents and decreased with the three stages at calcination temperatures ranging from 25 to 1200 °C. By contrast, the Cs immobilization ratio was markedly lowered by mixing with additives: of those, allophane had the best immobilization result. By increasing the additive ratio to 50 wt%, the Cs immobilization ratio became almost 100% and no volatilization of Cs was detected even after calcination at 1200 °C. This result indicates that calcination of the mixture of SLFC composites after adsorbing Cs+ ions and specific additives under appropriate ratio is effective for stable solidification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.