Abstract

The reduction of adipose depots is widely considered to be the optimal approach to limit pathologies associated with obesity. While many current antiobesity strategies are centered on regulating satiety, these approaches typically attempt an overall weight loss and are unable to target distinct adipose depots specifically associated with disease risk. The authors report a novel therapeutic modality utilizing localized and sustained delivery of drugs to provide for the selective ablation of adipose tissue. Using the epididymal fat pad of Sprague-Dawley rats as a model, they injected into the tissue poly(lactide-co-glycolide) microspheres encapsulating tumor necrosis factor-alpha, a well-known regulator of adipose tissue mass. The utility of this approach was investigated in vivo by measuring the fat pad mass relative to the contralateral control within the same animal (n = 4 at each time point) and in vitro by measuring apoptosis in adipose organ cultures. The authors demonstrated control over the localization of tumor necrosis factor-alpha by performing blood analysis. This is the first report of localized drug delivery for adipose tissue ablation, and these results indicate the potential utility of the general tissue ablation approach for treatment of numerous pathologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.