Abstract

BackgroundPermanent functional deficits following spinal cord injury (SCI) arise both from mechanical injury and from secondary tissue reactions involving inflammation. Enhanced release of adenosine and glutamate soon after SCI represents a component in the sequelae that may be responsible for resulting functional deficits. The role of adenosine A2A receptor in central ischemia/trauma is still to be elucidated. In our previous studies we have demonstrated that the adenosine A2A receptor-selective agonist CGS21680, systemically administered after SCI, protects from tissue damage, locomotor dysfunction and different inflammatory readouts. In this work we studied the effect of the adenosine A2A receptor antagonist SCH58261, systemically administered after SCI, on the same parameters. We investigated the hypothesis that the main action mechanism of agonists and antagonists is at peripheral or central sites.MethodsSpinal trauma was induced by extradural compression of SC exposed via a four-level T5-T8 laminectomy in mouse. Three drug-dosing protocols were utilized: a short-term systemic administration by intraperitoneal injection, a chronic administration via osmotic minipump, and direct injection into the spinal cord.ResultsSCH58261, systemically administered (0.01 mg/kg intraperitoneal. 1, 6 and 10 hours after SCI), reduced demyelination and levels of TNF-α, Fas-L, PAR, Bax expression and activation of JNK mitogen-activated protein kinase (MAPK) 24 hours after SCI. Chronic SCH58261 administration, by mini-osmotic pump delivery for 10 days, improved the neurological deficit up to 10 days after SCI. Adenosine A2A receptors are physiologically expressed in the spinal cord by astrocytes, microglia and oligodendrocytes. Soon after SCI (24 hours), these receptors showed enhanced expression in neurons. Both the A2A agonist and antagonist, administered intraperitoneally, reduced expression of the A2A receptor, ruling out the possibility that the neuroprotective effects of the A2A agonist are due to A2A receptor desensitization. When the A2A antagonist and agonist were centrally injected into injured SC, only SCH58261 appeared neuroprotective, while CGS21680 was ineffective.ConclusionsOur results indicate that the A2A antagonist protects against SCI by acting on centrally located A2A receptors. It is likely that blockade of A2A receptors reduces excitotoxicity. In contrast, neuroprotection afforded by the A2A agonist may be primarily due to peripheral effects.

Highlights

  • Permanent functional deficits following spinal cord injury (SCI) arise both from mechanical injury and from secondary tissue reactions involving inflammation

  • To shed light on the mechanism of protection of adenosine A2A receptor agonists/antagonists, in this study we investigated the effects of the selective adenosine A2A receptor antagonist, SCH58261, systemically and repeatedly administered after Spinal cord injury (SCI), on inflammation parameters and on c-jun N-terminal kinases (JNKs) Mitogen-activated protein kinases (MAPKs) activation

  • In the present paper we demonstrate that the adenosine A2A receptor antagonist SCH58261, systemically and continuously administered after SCI, protects from motor deficits up to 10 days after trauma

Read more

Summary

Introduction

Permanent functional deficits following spinal cord injury (SCI) arise both from mechanical injury and from secondary tissue reactions involving inflammation. In our previous studies we have demonstrated that the adenosine A2A receptor-selective agonist CGS21680, systemically administered after SCI, protects from tissue damage, locomotor dysfunction and different inflammatory readouts. In this work we studied the effect of the adenosine A2A receptor antagonist SCH58261, systemically administered after SCI, on the same parameters. Primary traumatic mechanical injury to spinal cord (SC) causes death of neurons that cannot be recovered and regenerated. Studies have indicated that neurons continue to die for hours following traumatic SCI [2] and that demyelination occurs [3]. Evidence indicates that resident microglia and macrophages originating from blood are two key cell types related to the occurrence of neuronal degeneration in CNS after traumatic injury. When SCI occurs, microglia in parenchyma are activated and macrophages from the circulation are able to cross the blood-brain barrier to act as intrinsic spinal phagocytes [4,5]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.