Abstract

Biological systems often change their responsiveness when subject to persistent stimulation, a phenomenon termed adaptation. In neural systems, this process is often selective, allowing the system to adapt to one stimulus while preserving its sensitivity to another. In some studies, it has been shown that adaptation to a frequent stimulus increases the system's sensitivity to rare stimuli. These phenomena were explained in previous work as a result of complex interactions between the various subpopulations of the network. A formal description and analysis of neuronal systems, however, is hindered by the network's heterogeneity and by the multitude of processes taking place at different time-scales. Viewing neural networks as populations of interacting elements, we develop a framework that facilitates a formal analysis of complex, structured, heterogeneous networks. The formulation developed is based on an analysis of the availability of activity dependent resources, and their effects on network responsiveness. This approach offers a simple mechanistic explanation for selective adaptation, and leads to several predictions that were corroborated in both computer simulations and in cultures of cortical neurons developing in vitro. The framework is sufficiently general to apply to different biological systems, and was demonstrated in two different cases.

Highlights

  • Adaptation is a biologically ubiquitous process whereby features of a system’s responsiveness change as a result of previous input

  • In the phenomenon of Mismatch Negativity (MMN), when a deviant sensory stimulus is applied on the background of a standard one, an evoked potential component which is absent in the presence of a single stimulus (e.g., [6,9,10]) is generated

  • We obtained 6 measurements from which we computed selectivity (Figure 9B) and amplification (Figure 9C) for each scenario according to Equations 13 and 14

Read more

Summary

Introduction

Adaptation is a biologically ubiquitous process whereby features of a system’s responsiveness change as a result of previous input. In the phenomenon of Mismatch Negativity (MMN), when a deviant sensory stimulus is applied on the background of a standard one, an evoked potential component which is absent in the presence of a single stimulus (e.g., [6,9,10]) is generated. This component’s magnitude was shown to depend on the scarcity of the odd-ball stimulus and on the rate of stimulation

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call