Abstract

It has been proposed that ipsilateral motor pathways play a role in the control of ipsilateral movements and recovery of function after injury. However, the extent to which ipsilateral motor pathways are engaged in voluntary activity in intact humans remains largely unknown. Using transcranial magnetic stimulation over the arm representation of the primary motor cortex, we examined ipsilateral motor-evoked potentials (iMEPs) in a proximal arm muscle during increasing levels of unilateral and bilateral isometric force in a sitting position. We demonstrate that iMEP area and amplitude decreased during bilateral contraction of homonymous (elbow flexor) muscles and increased during bilateral contraction of heteronymous (elbow flexor and extensor) muscles compared with a unilateral contraction, regardless of the level of force tested. To further understand the neuronal inputs involved in the bilateral effects, we examined the contribution from neck afferents projecting onto ipsilateral motor pathways. Medial (away from the muscle tested) and lateral (toward the muscle tested) rotation of the head enhanced bilateral iMEP effects from homonymous and heteronymous muscles, respectively. In contrast, head flexion and extension exerted nonspecific bilateral effects on iMEPs. Intracortical inhibition, in the motor cortex where iMEPs originated, showed modulation compatible with the changes in iMEPs. We conclude that ipsilateral projections to proximal arm muscles can be selectively modulated by voluntary contraction of contralateral arm muscles, likely involving circuits mediating asymmetric tonic neck reflexes acting, at least in part, at the cortical level. The pattern of bilateral actions may represent a strategy to engage ipsilateral motor pathways in a motor behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call