Abstract

Lignin is a rich renewable aromatic resource that can produce high-value-added chemicals. Lignin is regarded as one of the three major components of lignocellulosic biomass, which is composed of phenylpropane units connected by CO bond and CC bond. The cleavage of two chemical bonds is the main catalytic pathway in the production of chemicals and fuels from lignin. Although the cleavage of CO converts lignin into valuable aromatic compounds and renewable carbon sources, selective depolymerization for CC bonds is an important method to increase the yield of aromatic monomers. Therefore, in this review, we summarized the latest research trends on CC bond selective cleavage in lignin and lignin model compounds, focusing on various catalytic systems, including hydrogenolysis, oxidate, photocatalysis, and electrocatalysis. By analyzing the current status of CC bond breakage, the core issues and challenges related to this process and the expectations for future research were emphasized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call