Abstract

It is generally held that motor imagery is the internal simulation of movements involving one's own body in the absence of overt execution. Consistent with this hypothesis, results from numerous functional neuroimaging studies indicate that motor imagery activates a large variety of motor-related brain regions. However, it is unclear precisely which of these areas are involved in motor imagery per se as opposed to other planning processes that do not involve movement simulation. In an attempt to resolve this issue, we employed event-related fMRI to separate activations related to hand preparation—a task component that does not demand imagining movements—from grip selection—a component previously shown to require the internal simulation of reaching movements. Our results show that in contrast to preparation of overt actions, preparation of either hand for covert movement simulation activates a large network of motor-related areas located primarily within the left cerebral and right cerebellar hemispheres. By contrast, imagined grip selection activates a distinct parietofrontal circuit that includes the bilateral dorsal premotor cortex, contralateral intraparietal sulcus, and right superior parietal lobule. Because these areas are highly consistent with the frontoparietal reach circuit identified in monkeys, we conclude that motor imagery involves action-specific motor representations computed in parietofrontal circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.