Abstract

Methylenecyclopropanes (MCPs) have emerged as versatile building blocks in synthetic chemistry because of their unique reactivity. However, metal-catalyzed hydrosilylation of MCPs has met with very limited successes. In this paper, catalytic selective hydrosilylations of MCPs with some primary silanes using an ene-diamido lanthanum ate complex as the catalyst were described. The catalytic reactions resulted in the selective formation of silacyclopentanes and (E)-homoallylsilanes, respectively, depending on the substituents on MCPs. The formation of silacyclopentanes via a catalytic cascade inter- and intramolecular hydrosilylation mechanism is strongly supported by the control and deuteration-labeling experiments and DFT calculations. The unique reactivity and selectivity could be attributed to the large lanthanum ion and ate structure of the catalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.