Abstract
Physical stability of pharmaceutical amorphous solid dispersions is one of the critical attributes to the successful development of the formulation. Herein, we studied the impact of low-concentration poly(ethylene oxide) (PEO) on the crystallization rates of three polymorphs of indomethacin (IMC, γ-, α-, and δ-form). We observed that the addition of 3% w/w PEO significantly increased the crystal growth rates of γ-form and α-form of IMC, but had a negligible effect on the δ-form. The reduction of the activation energy for the crystal growth of IMC polymorphs after adding the PEO follows the order γ-form > α-form > δ-form, which is consistent with the trend toward the accelerating effects of PEO on the crystal growth rates of three polymorphs. With the addition of low-concentration PEO, there is an increase of molecular mobility of IMC as evidenced by the decreased structural relaxation times and viscosities. This study suggests that the substantially different effects of PEO on the crystal growth rates of IMC polymorphs are attributable to the different adsorption of PEO on the crystal surface of those polymorphs, which in turn exerts a selective accelerating effect on IMC molecules to organize into the different crystalline phases. These findings are relevant for understanding the crystallization behavior of amorphous solid dispersions containing polymorphic drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.