Abstract
Carcinogenic (bactericidal) radiation (λ = 200–300 nm with a peak at 254 nm) is present in natural (Sun) and artificial (lamps) source of UV radiation. Its intensity is very low as compared to other types of radiation, but it strongly affects the health of human beings. To prevent oncological diseases, it is important to monitor the carcinogenic radiation level; i.e., selective photodetectors are required. A UV photodetectors based on n-4H-SiC Schottly barriers and p+-n junctions are proposed. The quantum efficiency spectrum of such detectors is very close to the spectrum of relative action of carcinogenic radiation on human beings due to the direct optical transition at 4.9 eV in 4H-SiC. The quantum efficiency (at the spectral peak 254 nm) amounts to about 0.3 electrons/photon for virtually zero sensitivity in other spectral regions. Quantum efficiency in the wavelength range 247–254 nm is practically independent of temperature in the range from −100 to +300°C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.