Abstract

The amplification cycle of many replicators (natural or artificial) involves the usage of a host compartment, inside of which the replicator expresses phenotypic compounds necessary to carry out its genetic replication. For example, viruses infect cells, where they express their own proteins and replicate. In this process, the host cell boundary limits the diffusion of the viral protein products, thereby ensuring that phenotypic compounds, such as proteins, promote the replication of the genes that encoded them. This role of maintaining spatial colocalization, also called genotype-phenotype linkage, is a critical function of compartments in natural selection. In most cases, however, individual replicating elements do not distribute systematically among the hosts, but are randomly partitioned. Depending on the replicator-to-host ratio, more than one variant may thus occupy some compartments, blurring the genotype-phenotype linkage and affecting the effectiveness of natural selection. We derive selection equations for a variety of such random multiple occupancy situations, in particular considering the effect of replicator population polymorphism and internal replication dynamics. We conclude that the deleterious effect of random multiple occupancy on selection is relatively benign, and may even completely vanish is some specific cases. In addition, given that higher mean occupancy allows larger populations to be channeled through the selection process, and thus provide a better exploration of phenotypic diversity, we show that it may represent a valid strategy in both natural and technological cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.