Abstract

Interlayer rotation angle couples strongly to the electronic states of twisted van der Waals layers. However, not every angle is energetically favorable. Recent experiments on rotation-tunable electronics reveal the existence of a discrete set of angles at which the rotation-tunable electronics assume the most stable configurations. Nevertheless, a quantitative map for locating these intrinsically preferred twist angles in twisted bilayer system has not been available, posing challenges for the on-demand design of twisted electronics that are intrinsically stable at desired twist angles. Here we reveal a simple mapping between intrinsically preferred twist angles and geometry of the twisted bilayer system, in the form of geometric scaling laws for a wide range of intrinsically preferred twist angles as a function of only geometric parameters of the rotating flake on a supporting layer. We reveal these scaling laws for triangular and hexagonal flakes since they frequently appear in chemical vapor deposition growth. We also present a general method for handling arbitrary flake geometry. Such dimensionless scaling laws possess universality for all kinds of two-dimensional material bilayer systems, providing abundant opportunities for the on-demand design of intrinsic "twistronics". For example, the set of increasing magic-sizes that intrinsically prefers zero-approaching sequence of multiple magic-angles in bilayer graphene system can be revealed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call