Abstract

The nuclear Chirality-Parity (ChP) violation, a simultaneous breaking of chiral and reflection symmetries in the intrinsic frame, is investigated with a reflection-asymmetric triaxial particle rotor model. A new symmetry for an ideal ChP violation system is found and the corresponding selection rules of the electromagnetic transitions are derived. The fingerprints for the ChP violation including the nearly degenerate quartet bands and the selection rules of the electromagnetic transitions are provided. These fingerprints are examined for ChP quartet bands by taking a two-j shell h11/2 and d5/2 with typical energy spacing for A = 130 nuclei.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.