Abstract

We analyse selection rules for the emission of two electrons from the helium atom following the absorption of a few photons in an intense laser field. The rules arise, as generalization of the well-studied one-photon case, due to the symmetries of the accessible final states in the two-electron continuum. We show, in particular, that an increase in the number of absorbed photons leads to alternating suppression and non-suppression of the back-to-back emission of the two electrons. Results of numerical simulations using a model of the helium atom are in agreement with the theoretical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.