Abstract

We prove that the solution of the discounted approximation of a degenerate viscous Hamilton–Jacobi equation with convex Hamiltonians converges to that of the associated ergodic problem. We characterize the limit in terms of stochastic Mather measures by using the nonlinear adjoint method and deriving a commutation lemma. This convergence result was first proven by Davini, Fathi, Iturriaga, and Zavidovique for first order Hamilton–Jacobi equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.