Abstract

BackgroundRecent studies of selection on mitochondrial (mt) OXPHOS genes suggest adaptation due mainly to environmental variation. In this context, Tunisian hares that display several external phenotypes with phylogenetically rather homogenous gene pool and shallow population structure provide a good precondition to detect positive selection on mt genes related to environmental/climatic variation, specifically ambient temperature and precipitation.ResultsWe used codon-based methods along with population genetic data to test for positive selection on ATPase synthase 6 (ATP6) and NADH dehydrogenase 2 (ND2) of cape hares (Lepus capensis) collected along a steep ecological gradient in Tunisia. We found significantly higher differentiation at the ATP6 locus across Tunisia, with sub-humid Mediterranean, semi-arid, and arid Sahara climate than for fourteen unlinked supposedly neutrally evolving nuclear microsatellites and mt control region sequences. This suggested positive selection on ATP6 sequences, which was confirmed by several codon-based tests for one sequence site that together with a second site translated into four different amino acids. Positive selection on ND2 sequences was also confirmed by several codon-based tests. The corresponding frequencies of the two most prevalent variants at each locus varied significantly across climate regions, and our logistic general linear models of occurrence of those proteins indicated significant effects of mean annual temperature for ATP6 and mean minimum temperature of the coldest month of the year for ND2, independent of geographical location, annual precipitation, and the respective co-occurring protein at the second locus. Moreover, presence of the ancestral ATP6 protein, as inferred from phylogenetic networks, was positively affected by the simultaneous presence of the derived ND2 protein and vice versa, independent of temperature, precipitation, or geographic location. Finally, we obtained a significant coevolution signal for the ancestral ATP6 and derived ND2 sequences and vice versa.Conclusionspositive selection was strongly suggested by the population genetic approach and the codon-based tests in both mtDNA genes. Moreover, the two most prevalent proteins at the ATP6 locus were distributed at significantly varying frequencies across the study area with a significant effect of mean annual temperature on the occurrence of the ATP6 proteins independent of geographical coordinates and the co-occuring ND2 protein variant. For ND2, occurrence of the two most frequent protein variants was significantly influenced by the mean minimum temperature of the coldest month, independent of the co-occurring ATP6 protein variant and geographical coordinates. This strongly suggests direct involvement of ambient temperature in the adaptation of the studied mtOXPHOS genes.

Highlights

  • Recent studies of selection on mitochondrial OXPHOS genes suggest adaptation due mainly to environmental variation

  • Genetic diversity of ATPase synthase 6 (ATP6) and NADH dehydrogenase 2 (ND2) mtDNA genes The obtained ATP6 and ND2 sequences resulted in 34 and 41 haplotypes with 40 and 47 variable sites and with a total length of 399 bp and 348 bp, respectively; for more details of sequence variability see Additional file 1: Table S1 (Supporting information). Both the ATP6 and ND2 sequences translated into four amino acids sequences each, due to two and four non-synonymous positions, respectively (Fig. 2)

  • Based on our phylogenetic rooting of the networks by our outgroup taxa, 53.38% of all ATP6 haplotypes were represented by the ancestral protein A, and 89.47% of all ND2 haplotypes were represented by the ancestral protein A

Read more

Summary

Introduction

Recent studies of selection on mitochondrial (mt) OXPHOS genes suggest adaptation due mainly to environmental variation. The high copy number in cells, its maternal inheritance, its high point mutation rate, the fact that recombinations are occurring very rarely in mammals and other animals, as well as its compact architecture and small total size have made mtDNA very popular for phylogenetic, phylogeographic, and population genetic studies for a wide range of taxa. The majority of these studies, implicitly considers mtDNA as neutrally evolving and mtDNA variability is usually interpreted to reflect the effects of gene flow and random drift, whereas molecular changes are supposed not to influence the fitness of the individuals. As to our knowledge, even no preliminary view is at hand of how positive selection of coevolving mtOXPHOS genes might influence intraspecific mitogenome variability under different environmental contexts

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.