Abstract

Understanding the genetic basis of reproductive isolation promises insight into speciation and the origins of biological diversity. While progress has been made in identifying genes underlying barriers to reproduction that function after fertilization (post-zygotic isolation), we know much less about earlier acting pre-zygotic barriers. Of particular interest are barriers involved in mating and fertilization that can evolve extremely rapidly under sexual selection, suggesting they may play a prominent role in the initial stages of reproductive isolation. A significant challenge to the field of speciation genetics is developing new approaches for identification of candidate genes underlying these barriers, particularly among non-traditional model systems. We employ powerful proteomic and genomic strategies to study the genetic basis of conspecific pollen precedence, an important component of pre-zygotic reproductive isolation among yellow monkeyflowers (Mimulus spp.) resulting from male pollen competition. We use isotopic labeling in combination with shotgun proteomics to identify more than 2,000 male function (pollen tube) proteins within maternal reproductive structures (styles) of M. guttatus flowers where pollen competition occurs. We then sequence array-captured pollen tube exomes from a large outcrossing population of M. guttatus, and identify those genes with evidence of selective sweeps or balancing selection consistent with their role in pollen competition. We also test for evidence of positive selection on these genes more broadly across yellow monkeyflowers, because a signal of adaptive divergence is a common feature of genes causing reproductive isolation. Together the molecular evolution studies identify 159 pollen tube proteins that are candidate genes for conspecific pollen precedence. Our work demonstrates how powerful proteomic and genomic tools can be readily adapted to non-traditional model systems, allowing for genome-wide screens towards the goal of identifying the molecular basis of genetically complex traits.

Highlights

  • By identifying the genes underlying barriers to reproduction, we gain broad insight into the processes driving speciation and the origins of organismal diversity

  • We focus on identifying proteins of the male gametophyte with evidence of positive selection and/or rapid adaptive divergence as providing an opportunity to link molecular screens and conspecific pollen precedence (CPP) via the expectation that pollen competition reflects one or more components of sexual selection — an expectation which predicts sweeps and/or balancing selection for outcrossing populations of Mimulus, but which may be reflected in a signal of adaptive divergence over longer time scales among taxa of yellow monkeyflowers

  • Because we are able to match mass spectra for peptides corresponding to many thousands of proteins from pollinated styles using a similar level of MS/MS detection effort, this is strong evidence supporting successful 15N labeling of maternal style tissues and allows us to confidently identify pollen tube proteins (PTPs) within the style

Read more

Summary

Introduction

By identifying the genes underlying barriers to reproduction, we gain broad insight into the processes driving speciation and the origins of organismal diversity. Reproductive barriers have long been known to include multiple pre-zygotic mechanisms that function before fertilization, after which post-zygotic barriers including hybrid sterility and inviability mark an irreversible stage of reproductive isolation [1]. Significant progress has been made in understanding the mechanisms that underlie post-zygotic isolating barriers, and in several cases the causal genes have been identified [2,3,4]. This work has had tremendous impact on our understanding of the genetic basis and evolutionary forces underlying hybrid sterility and inviability, in particular highlighting the important role of genetic conflicts and epistatic genic incompatibilities known as Bateson-Dobzhansky-Muller (BDM) incompatibilities [2]. Significantly less is known regarding the genes underlying earlier acting pre-zygotic barriers. As with classical examples of sexually selected traits [5], sexual selection even at a molecular level can be a strong force leading to the rapid evolution of reproductive barriers [6]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.