Abstract

Construction industry workers; are exposed to serious safety and health risks, hazardous work environments, and intense physical work. This situation causes fatal and non-fatal accidents, reduces productivity, and causes a loss of money and time. Construction safety management can use wearable sensors to improve safety performance. Since there are many types of sensors and not all sensors can be used in construction applications, it is necessary to identify suitable and reliable sensors. This requirement causes a sensor selection problem. The study aims to determine the priority order of physiological and kinematic sensors in preventing risks in the construction industry. Within the scope of this purpose, five criteria and seven alternatives were determined in line with the literature research and expert opinions. The criteria weights were calculated with the AHP method, and the alternatives were ranked with PROMETHEE and AHP. Providing a proactive approach to the use of sensors in the construction industry will provide safer working conditions, identify workers at risk, and help identify and predict potential health and safety risks. It will contribute to the literature on improving construction health and safety management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call