Abstract

The functional coupling between the declining portion of the FSH surge and the growing follicles of a wave was studied by treating heifers with a minimal dose of estradiol to decrease FSH concentrations without an associated change in LH concentrations. Estradiol treatment when the largest follicle reached >/= 6.0 mm (Hour 0) resulted in depression of both FSH concentrations and diameter of the largest follicle by Hour 8. The smaller follicles were also inhibited. These results supported the hypothesis that FSH continues to be needed by the growing follicles even when the FSH concentrations are decreasing during the declining portion of the FSH surge. Estradiol treatment when the largest follicle was >/= 8.5 mm (expected time of follicular deviation) also resulted in a transient decrease in both FSH concentrations and diameter of the largest follicle, but the diameters of the smaller follicles were not affected. These results supported the hypothesis that the low concentrations of FSH at the expected time of deviation, although inadequate for the smaller follicles, were required for continued growth of the largest follicle. In another study, ablation (Hour 0) of the largest follicle was done at >/= 7.5 mm vs. >/= 8.5 mm. The mean FSH concentrations for the 8.5-mm groups were greater for the ablation group than for the control group at Hours 8 and 12, but there was no difference between the 7.5-mm groups at any hour. These results supported the hypothesis that by the time the largest follicle reaches the expected beginning of deviation it has developed a greater capacity for suppressing FSH. It is postulated that the essence of the selection of a dominant follicle is a close two-way functional coupling between changing FSH concentrations and follicular growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call