Abstract

Despite the widespread use of single-flue stacks, due to the possibility of increasing the rise of flue gases into the atmosphere due to the close location of individual flues in a common shell and ensuring the high reliability of this shell by isolating it from flue gases, multi-flue stacks are increasingly being used. To minimize their cost, it is necessary to determine such an arrangement of flues, in which the diameter of the stack shell will be minimal.THE PURPOSE. Consider the main types of multi-flue stacks used in world practice. Obtain an analytical solution for determining the minimum possible diameter of the reinforced concrete shell of a four-flue stack with flues of different diameter.METHODS. Graphical and analytical methods using computer modeling, as well as the use of computer-aided design systems.RESULTS. An analytical solution is obtained to determine the minimum possible diameter of the reinforced concrete shell of a four-flue stack with stems of different diameters at given distances between the flues and between the flues and the containment shell as a solution to a system of algebraic and trigonometric equations. The distances between the flues and between the flues and the containment can be set to any. In this paper, a new methodology and calculation program for four-flue stacks has been developed. It is shown that the shell diameter depends on the arrangement of flues of different diameters. In the absence of space restrictions for flues, flues with the largest diameters should be placed opposite each other. The obtained method for determining the shell diameter due to more accurate design and when all specified conditions are met, allows to reduce the cost of the shell by 4–9 % compared to the current method for determining the shell diameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call