Abstract

The urbanization of territories and the increase in density of urban development cause the necessity of introduction of improved structural solutions into the construction practice. This is also connected with both the erection of higher buildings with longer span structures and the use of non-standard methods for the analysis of structures. The introduction of modern structural patterns lessens considerably the weight of structures, reduces the consumption of materials and cuts the construction production costs. At the same time, the responsibility for the construction projects enhances. A systematic control over the state of structures including a quasi-continuous one, allows us to reveal the very beginning of destructive processes and to take measures for their liquidation. One of monitoring methods is the tachymetry survey of positions of a number of adjusting marks fixed at the structural elements. The non-reflection mode of operation of tachymetry survey allows lifting the restrictions for the number of points under observations. The combination of the afore-said factors determines the urgency of the use of the tachymetry as a tool for monitoring the state of the construction project. The subject of the study: the subject of the present research work is the methodology of selection of tachymetry spacing during the deformation monitoring of a construction project. The tachymetry can be carried out both in the mode of focusing on pre-established marks, and in the non-reflection mode through the points on the structure. The disadvantage of the first method is the need of installation of light-reflecting marks, which is not always possible due to some technical and/or aesthetic reasons and may lead to a significant increase in the cost of monitoring. The disadvantage of the second method is a reduced accuracy of the measurements. A wide incremental step may lead to the failure of detection of deformation processes, a narrow step means a considerable increase in the monitoring time and an unjustified rise in the cost of monitoring. Objectives: the purpose of this research work is the optimization of tachymetry spacing, which will reveal all deviations of structural elements from their permanent positions by a value exceeding the accuracy of measurements. Materials and methods: the initial material for the study included the results of geodetic observations carried out at various construction projects, in particular, the tachymetry results. The method of study includes the comparing of the limiting admissible curvature value to the minimum deformation value measured with the tachymeter accuracy. Results: a methodology is suggested for the selection of the tachymetry survey step. On its basis, a formula for the determination of a step value is offered that takes into account the geometry of the structure, the strain capacity of the material and the accuracy of the survey. Conclusions: the obtained results allow us to optimize the number of the observation points during the tachymetry survey and to ensure the detection of all destructive effects associated with structural geometry changes at the construction project. The descriptions of the methodology are recommended for their application in the development of geodetic monitoring programmes.

Highlights

  • During the maintenance process of construction projects, their structural elements are subject to various effects causing the changes in their forms

  • For the solution of the afore-stated problem, we introduced the assumption that the deformation of a structural element in its cross-section normal to its initial surface may be described by an arc of the circle with the radius R

  • The value of A is determined by the accuracy of measurements, while the value of R is characterized by the physical properties of the structural element

Read more

Summary

Introduction

During the maintenance process of construction projects, their structural elements are subject to various effects causing the changes in their forms. These changes are directly connected with the geometry of structural elements (their thickness values), the elasticity modulus of the material and the mechanical stress values in the elements. The monitoring of the state of a construction project as a system of observations over the parameters of its constituents carried out with a given periodicity allows us to reveal timely the destructive processes and to take measures for their liquidation. The safety of the further maintenance of the construction project may be provided for

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.