Abstract
Two-dimensional solitary waves at the surface of a film flow down a vertical plane are considered. When the system is subjected to inlet white noise, solitary waves are formed after an inception region and interact with each other. Using open-domain simulations of reduced equation models, we investigate numerically their late time process dynamics. Close to the instability threshold, the waves synchronize themselves into bound states. For higher values of the Reynolds number, the separation distance between the waves increases and the synchronization process at work is weaker. Performing statistics, we show that the mean characteristics of the waves correspond to the minimal value of the mean film thickness along the traveling-wave branch of solutions. In this regime, synchronization occurs through the waves tails which is associated with a change of scaling of the waves features. A similar behavior is observed performing simulations in periodic domains: the selected waves maximize the mean flow rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.