Abstract
It has become established practice during the past 20 years to use high-resolution historical rainfall time series as input to hydrological model packages for detailed simulation of urban drainage systems. However, sufficiently long rain series are rarely available from the exact catchment in question and simulations are hence often based on available rain series from other locations. Extreme rainfall properties of importance to the performance of urban storm drainage systems vary significantly even in regions with only minor physiographic differences. Part of this variation can be explained by regional variations of the mean annual rainfall and the remaining statistical residue can be interpreted as statistical uncertainty. In Denmark, more than 75 high-resolution rain gauges are installed across a total area of 43,000 m. About 40 gauges had sufficiently long records to be included in a comprehensive national investigation where newly developed statistical regionalisation procedures were used to model the regional variation of extreme rainfalls. On this basis, a spreadsheet model was made available for estimation of extreme design rainfalls and the associated uncertainty at any location in the country. Statistics were furthermore computed to classify historical rainfall time series according to the developed regional model, and this makes it possible to assess the uncertainty related with using different historical rain series for simulations at ungauged locations. This research indicates that use of historical point rainfall data at ungauged locations introduces a significant uncertainty that is largely overlooked in today's practice. The engineering recommendation is to select historical rain series based on an evaluation of the local physiographic characteristics (e.g., the mean annual rainfall) and a (pre-defined) desired safety level of the simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.