Abstract

A limitation for recombinant adeno-associated virus (rAAV)-mediated gene transfer into the central nervous system (CNS) is the low penetration of vectors across the human blood-brain barrier (BBB). High doses of intravenously delivered vector are required to reach the CNS, which has resulted in varying adverse effects. Moreover, selective transduction of various cell types might be important depending on the disorder being treated. To enhance BBB penetration and improve CNS cell selectivity, we screened an AAV capsid-shuffled library using an in vitro transwell BBB system with separate layers of human endothelial cells, primary astrocytes and/or human induced pluripotent stem cell-derived cortical neurons. After multiple passages through the transwell, we identified chimeric AAV capsids with enhanced penetration and improved transduction of astrocytes and/or neurons compared with wild-type capsids. We identified the amino acids (aa) from regions 451–470 of AAV2 associated with the capsids selected for neurons, and a combination of aa from regions 413–496 of AAV-rh10 and 538–598 of AAV3B/LK03 associated with capsids selected for astrocytes. A small interfering RNA screen identified several genes that affect transcytosis of AAV across the BBB. Our work supports the use of a human transwell system for selecting enhanced AAV capsids targeting the CNS and may allow for unraveling the underlying molecular mechanisms of BBB penetration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.