Abstract

The proposed research deals with selection of particle swarm optimization (PSO) algorithm parameters for missile gliding trajectory optimization relying on Taguchi design of experiments, analysis of variance (ANOVA) and artificial neural networks (ANN). Population size, inertial weight and acceleration coefficients of PSO were chosen for the present study. The experiments have been designed as per Taguchi's design of experiments using L25 orthogonal array for selection of better PSO parameters. Missile gliding trajectory is optimized by discretizing angle of attack as control parameter, consequent conversion of optimal control problem to nonlinear programming problem (NLP) and finally solving the problem using PSO with optimized parameters to obtain optimum angle of attack and realization of maximum gliding range. Simulation results portrayed that the gliding range is maximized and missile glide distance is enhanced compared to earlier experiments. The efficiency of proposed approach was verified via different test scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call