Abstract

Background The most important part of the state social and economic policy is optimization of the healthcare system, where the loss of public health leads to economic damage. Against this background, forecasting the work of medical institutions is the basis for the successful development of healthcare, despite the fact that the healthcare system, indicators and standards of medical and social welfare are still not stable, and a clear development strategy for the shortand long-term period has not been worked out. Aim of study Determining the most optimal method for predicting the work of a medical institution, based on identification of the main trends in the time series when constructing a model of the dependence of parameters or determining the behavior of data as a stochastic series (i.e. modeling random processes and random events with some random error).Material and methods To predict the main statistical indicators of N.V. Sklifosovsky Research Institute for Emergency Medicine based on a retrospective analysis, data were used that were submitted to the City Bureau of Medical Statistics and entered into official reporting forms (form № 30, approved by Goskomstat of the Russian Federation dated September 10, 2002, № 175): the number of hospitalized patients and mortality rates in inpatient and intensive care units. To select the optimal methodology for the experimental forecast model, data were used for the period from 1991 to 2016. Indicators for 2017 were taken as control values.Results As a result of the comparison of several methods (moving averages, least squares approach, Brown model, Holt–Winters method, autocorrelation model, Box–Jenkins method) as applied to the work of N.V. Sklifosovsky Research Institute for Emergency Medicine, the Holt–Winters model was chosen as the most appropriate one for the data characteristics.Findings 1. When using methods of moving averages, least squares, Box-Jenkins, as well as Brown model and autocorrelation, the forecast result is not always influenced by strictly straight-line indicators of the time series, due to the heterogeneity of the time series and the presence of outliers (often found in a medical institution providing emergency care), which lead to a significant decrease in the reliability of forecasting. 2. The application of the Holt–Winters model, which takes into account the exponential trend (the trend of time series indicators) and additive season (periodic fluctuations observed in the time series), is most suitable for processing statistical data and forecasting for long-term, medium-term and short-term periods taking the specifics of a hospital providing emergency care into account. 3. The choice of the optimal method for predicting the work of a medical institution, based on the identification of the main trends in the time series, taking most of the features in the modeling of random processes and events into account, allowed to reduce the relative forecast error.

Highlights

  • The most important part of the state social and economic policy is optimization of the healthcare system, where the loss of public health leads to economic damage

  • Выбор оптимального метода прогнозирования работы медицинского учреждения, основанного на выделении главных тенденций временнóго ряда с учетом большинства особенностей при моделировании случайных процессов и событий, позволил уменьшить относительную ошибку прогноза

  • Fig. 4. : Exponential smoothing for data on admissions, in-hospital deaths, intensive care deaths, general mortality, admission to intensive care, deaths in various departments

Read more

Summary

Результаты В ыводы

Важнейшей частью социально-экономической политики государства является оптимизация системы здравоохранения, ошибки и сбои в работе которой приводят к потере общественного здоровья и экономическому ущербу. 1. При использовании методов сглаживания по скользящей средней, наименьших квадратов, Бокса–Дженкинса, а также моделей Брауна и автокорреляции на результат прогноза влияют не всегда строго прямолинейные показатели динамического ряда в силу неоднородности динамических рядов и наличия так называемых выскакивающих величин (особенно часто выделяющихся в медицинском учреждении, оказывающем неотложную помощь), которые приводят к значительному снижению достоверности прогнозирования. 2. Применение модели Хольта–Уинтерса, которая учитывает экспоненциальный тренд (тенденция изменения показателей временнóго ряда) и аддитивную сезонность (периодические колебания, наблюдаемые на временных рядах), является наиболее целесообразным для обработки статистических данных и прогнозирования на дальнесрочные, среднесрочные и краткосрочные периоды с учетом специфики стационара, оказывающего неотложную помощь. 3. Выбор оптимального метода прогнозирования работы медицинского учреждения, основанного на выделении главных тенденций временнóго ряда с учетом большинства особенностей при моделировании случайных процессов и событий, позволил уменьшить относительную ошибку прогноза.

Исследование не имеет спонсорской поддержки
Модель ARIMA
МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ
ОЦЕНКА ДОСТОВЕРНОСТИ МЕТОДОВ
Линейный метод наименьших квадратов
Умершие в стационаре
Модель Брауна
Θt β yt at
Умерли в стационаре
Δd хt
Результаты и их обсуждение
Refe r e n ces
Background
Material and methods
Results

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.