Abstract

This work aimed to assess the probiotic potential of different Kluyveromyces lactis strains isolated from Canastra cheese and to produce a fermented cheese whey beverage added to beetroot juice using the selected strain. Kluyveromyces lactis strains were tested for their resistance to the passage through the simulated gastrointestinal tract, adhesion properties, and functional effects such as inhibition of enteric pathogens, short-chain fatty acids (SCFA) production, and β-galactosidase activity. The selected strain was used to produce a fermented cheese whey beverage added to beetroot juice in different proportions. The produced beverages were characterized using HPLC for sugars, Folin-Ciocalteu for total phenolic content, DPPH for antioxidant activity, and GC-MS for volatiles compounds. Except B51, all strains showed viability above 75% after exposure to the simulated gastric and duodenal juices. The aggregation rates were above 84% in 24 h. Only B9 and C16 strains presented hydrophobicity above 60%. The highest B9 β-galactosidase activities were 2.17 U/g and 2.21 U/g for pH 7 and 9, respectively. The B9 SCFA profile was similar to that found for Saccharomyces bourllardi. The fermented cheese whey beverages presented phenolic content ranging from 102.75 to 291.61 μg EAG/mL and inhibition of DPPH ranging from 38.69 to 81.02% after 21 days of storage, besides being lactose free. Esters and acetates were the most abundant compounds. Kluyveromyces lactis B9 presented interesting results as a potential probiotic yeast. The produced beverages allowed the delivery of K. lactis B9 through innovative product with functional properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call