Abstract

Selection and use of appropriate reference genes as internal controls in real-time reverse transcription PCR (RT-PCR) assays is highly important for accurate quantification of gene expression levels. Since some photosynthetic genes are encoded in the nuclear genome and others in the chloroplast genome, we evaluated both nuclear- and plastid-encoded candidate reference genes. Six plastid-encoded candidate reference genes were derived from Arabidopsis microarray data and three plastid- and five nuclear-encoded reference genes were derived from literature. Cytokinins influence photosynthetic gene expression, so we evaluated the expression stability of the candidate reference genes in transgenic Nicotiana tabacum plants with elevated or diminished cytokinin content. We found that the most reliable strategy makes use of plastid-encoded genes for normalizing plastid photosynthetic genes and nuclear-encoded reference genes for normalizing nuclear photosynthetic genes. Compared to the use of nuclear reference genes only, this approach assimilates any effects on transcriptional activity of chloroplasts or number of chloroplast. The best expression stabilities in Nicotiana tabacum were observed for the plastid-encoded references genes Nt-RPS3, Nt-NDHI and Nt-IN1 and for the nuclear-encoded genes Nt-ACT9, Nt-αTUB and Nt-SSU. These genes may be suitable for normalization of photosynthetic genes under other experimental conditions in Nicotiana tabacum, and orthologues of these genes may be suitable candidates for normalizing photosynthetic gene expression in other species.Electronic supplementary materialThe online version of this article (doi:10.1007/s11120-009-9470-y) contains supplementary material, which is available to authorized users.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call