Abstract

N-methyl-2-pyrrolidone is a highly polar aprotic solvent that is frequently utilized across a broad range of applications in industry. The composition of chlorinated polyvinyl chloride is commonly flame-resistant and mechanically strong. In this research, the central composite design technique uses response surface methodology to perform a parametric study. The effect of the input variables wt.% (16%, 20%, 24%), stirring speed (300, 600, 900 r/min), and stirring time (20 min, 30 min, 40 min) on the output responses (dielectric strength kV/mm, and viscosity Pascal) were examined. The output responses were recorded during the experiments according to the experimental design. The factors impacting the response were identified through analysis of variance. According to the predicted vs. actual diagram, the confirmed experiments fit well with the predictions. Based on the response surface, the parameter interaction profile was analyzed. According to the contour plots related to each interaction, the maximum value can be achieved within different stirring parameters. Based on the result of optimization, the optimum values of dielectric strength and viscosity were found in (wt.% of chlorinated polyvinyl chloride—18.101%), (stirring speed—664 r/min), (stirring time—21.860 min). The output response obtained from the response surface methodology is the dielectric strength (18.5 kV/mm) and viscosity (37.67 Pa).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.