Abstract

Oxygen reduction reaction (ORR) electrocatalysts, which are highly efficient, low-cost, yet durable, are important for secondary Zn–air cell applications. ORR activities of single and mixed metal oxide and carbon electrocatalysts were studied using rotating disc electrode (RDE) measurements, Tafel slope and Koutecky–Levich plots. It was found that MnOx combined with XC-72R demonstrated high ORR activity and good stability—up to 100 mA cm−2. The performance of the selected ORR electrode and a previously optimised oxygen evolution reaction (OER) electrode was thereafter tested in a custom-built secondary Zn–air cell in a tri-electrode configuration, and the effects of current density, electrolyte molarity, temperature, and oxygen purity on the performance of the ORR and OER electrode were investigated. Finally, the durability of the secondary Zn–air system was assessed, demonstrating energy efficiencies of 58–61% at 20 mA cm−2 over 40 h in 4 M NaOH + 0.3 M ZnO at 333 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.