Abstract

Ordinal categorial variables are a common case in regression modeling. Although the case of ordinal response variables has been well investigated, less work has been done concerning ordinal predictors. This article deals with the selection of ordinally scaled independent variables in the classical linear model, where the ordinal structure is taken into account by use of a dierence penalty on adjacent dummy coecients. It is shown how the Group Lasso can be used for the selection of ordinal predictors, and an alternative blockwise Boosting procedure is proposed. Emphasis is placed on the application of the presented methods to the (Comprehensive) ICF Core Set for chronic widespread pain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.