Abstract
The significant research effort in the domain of epilepsy has been directed toward the development of an automated seizure detection system. In their usage of the electrophysiological recordings, most of the proposals thus far have followed the conventional practise of employing all frequency bands following signal decomposition as input features for a classifier. Although seemingly powerful, this approach may prove counterproductive since some frequency bins may not carry relevant information about seizure episodes and may, instead, add noise to the classification process thus degrading performance. A key thesis of the work described here is that the selection of frequency subsets may enhance seizure classification rates. Additionally, the authors explore whether a conservative selection of frequency bins can reduce the amount of training data needed for achieving good classification performance. They have found compelling evidence that using spectral components with <25 Hz frequency in scalp electroencephalograms can yield state-of-the-art classification accuracy while reducing training data requirements to just a tenth of those employed by current approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.