Abstract
Novel antagonists of the proinflammatory leukocyte chemoattractant C5a have been produced from a phage display library of whole-molecule random mutants. The cDNA for the inflammatory polypeptide C5adR(74) was used as template in a PCR reaction doped with the mutagenic nucleoside triphosphates dPTP [dP: 6-(2-deoxy-beta-D-ribofuranosyl)-3,4-dihydro-8H-pyrimido-[4,5-c][1,2]oxazin-7-one] and 8-oxodGTP (8-oxodG: 8-oxo-2'-deoxyguanosine) to allow the introduction of mutations in a highly controlled manner throughout the cDNA. The resultant library of mutants was displayed on bacteriophage M13 using a jun/fos linker sequence. Functional polypeptides were isolated by several rounds of selection against the receptor for C5a expressed on the surface of CHO cells. From this selection procedure, a limited number of variants of C5adR(74) were obtained. When expressed as free polypeptide, the binding affinities of the selected C5adR(74) sequences were increased 5-fold relative to wild-type protein. Site-directed mutagenesis of the C-terminus of these variants resulted in the production of antagonists of C5adR(74) activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.