Abstract

Non-traditional machining (NTM) processes are now being widely used to generate intricate and accurate shapes in materials, like titanium, stainless steel, high strength temperature resistant (HSTR) alloys, fiber-reinforced composites, ceramics, refractories and other difficult-to-machine alloys having higher strength, hardness, toughness and other diverse material properties. Generation of complex shapes in such materials by the traditional machining processes is experienced to be difficult. For effective utilization of the capabilities of different NTM processes, careful selection of the most suitable process for a given machining application is often required. Selection of the best suited NTM process for a work material and shape feature combination requires the consideration of several criteria. In this paper, an analytic network process (ANP)-based approach is proposed to select the most appropriate NTM process for a given machining application taking into account the interdependency and feedback relationships among various criteria affecting the NTM process selection decision. To avoid the difficult and time consuming mathematical calculations of the ANP, a computer program is also developed in Visual Basic 6.0 with graphical user interface to automate the entire NTM selection decision process. It simply acts as an ANP solver. The observed results from the ANP solver are quite satisfactory and match well with those obtained by the past researchers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.