Abstract

The focus of this study is on the problem of manipulator system selection for a multiple-goal task by evaluating task completion time and cost with computational time constraints. An approach integrating system selection, structural configuration design, layout design, motion planning, and relative cost calculation is proposed to solve this problem within a reasonable computational time. In the proposed approach, multiple-objective particle swarm optimization (MOPSO) is utilized to search for the appropriate manipulator system with appropriate structural configuration from a set of candidate systems. Particle swarm optimization (PSO) and the nearest neighborhood algorithm are employed in layout design and motion planning due to their high convergence speed. Three methods involving a random search algorithm are compared to the proposed approach through a simulation. The simulation is done with a set of tasks and the result shows the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.