Abstract

Article history: Received July 10, 2014 Accepted December 31, 2014 Available online December 31 2014 Nowadays, industrial robots are being pervasively used in almost every manufacturing organization for improving operational quality, safety and productivity. Depending on the nature of task to be performed, many varieties of robots are now commercially available from different manufacturers. For efficiently carrying out the designed task, a number of functional attributes of an industrial robot are also simultaneously responsible. Therefore, selection of an appropriate and competitive robot alternative becomes a complicated and equally challenging task for the decision makers. A quite strong model of multi-criteria decision-making is needed to deal with this problem of industrial robot evaluation and selection. In this paper, the applicability of fuzzy axiomatic design (FAD) principles is explored for solving a real time robot selection problem. Seven candidate robots which are commercially available for light assembly operations are evaluated with respect to a mix of nine criteria. All these criteria are either qualitative in nature or expressed as a range of numerical values. Suitability rankings of all the feasible alternatives are derived using FAD methodology, thus establishing it as a systematic and dependable tool for solving industrial robot selection problems in fuzzy environment. Growing Science Ltd. All rights reserved. 5 © 201

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call