Abstract

Glucose metabolism has been studied in two strains of Acinetobacter calcoaceticus. Strain LMD 82.3, was able to grow on glucose and possessed glucose dehydrogenase (EC 1.1.99.17). Glucose oxidation by whole cells was stimulated by PQQ, the prosthetic group of glucose dehydrogenase. PQQ not only increased the rate of glucose oxidation and gluconic acid production but also shortened the lag phase for growth on glucose. Strain LMD 79.41 also possessed glucose dehydrogenase but was unable to grow on glucose. Batch cultures and carbon-limited chemostat cultures growing on acetate in the presence of glucose oxidized the sugar to gluconic acid, which was not further metabolized. However, after prolonged cultivation on mixtures of acetate and glucose, carbon-limited chemostat cultures suddenly acquired the capacity to utilize gluconate. This phenomenon was accompanied by the appearance of gluconate kinase and a repression of isocitrate lyase synthesis. In contrast to the starter culture, cells from chemostats which had been fully adapted to gluconate utilization, were able to utilize glucose as a sole carbon and energy source in liquid and solid media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.